LONDON:
HARRISON AND SONS, PRINTERS IN ORDINARY TO HER MAJESTY,
ST. MARTIN'S LANE.
CONTENTS.

VOL. XLII.

No. 251.—January 6, 1887.

On the Occurrence of Silver in Volcanic Ash from the Eruption of Cotopaxi of July 22nd and 23rd, 1885. By J. W. Mallet, M.D., F.R.S., University of Virginia ... 1

Preliminary Note on the Continuity of the Liquid and Gaseous States of Matter. By William Ramsay, Ph.D., and Sydney Young, D.Sc............. 3

Note on Lepidodendron Harcourtii and L. fuliginosum, Will. By W. C. Williamson, LL.D., F.R.S., Professor of Botany in the Owens College and in the Victoria University .. 6

On the Organisation of the Fossil Plants of the Coal-measures: Heteran-gium Tiliaeoides, Will., and Kaloxylon Hookeri. By Professor W. C. Williamson, LL.D., F.R.S., Professor of Botany in the Owens College and in the Victoria University 8

List of Presents... 10

January 13, 1887.

Supplementary Note on Polacanthus Foxi, describing the Dorsal and some parts of the Endoskeleton imperfectly known in 1881. By J. W. Hulke, F.R.S. ... 16

The Reputed Suicide of Scorpions. By Alfred G. Bourne, D.Sc., Fellow of University College, London, and Professor of Biology in the Presidency College, Madras... 17

Supplementary Note on the Values of the Napierian Logarithms of 2, 3, 5, 7, and 10, and of the Modulus of Common Logarithms. By Professor J. C. Adams, M.A., F.R.S. ... 22

On the Crimson Line of Phosphorescent Alumina. By William Crookes, F.R.S., V.P.C.S. ... 25

List of Presents... 31
January 20, 1887.

Some Anomalies in the Winds of Northern India, and their Relation to the Distribution of Barometric Pressure. By S. A. Hill, B.Sc., Meteorological Reporter to Government, North-Western Provinces and Oudh .. 35

Further Discussion of the Sun-Spot Observations made at South Kensington. By J. Norman Lockyer, F.R.S. ... 37

List of Presents ... 47

January 27, 1887.

On a Perspective Microscope. By George J. Burch 49

On the Thermodynamic Properties of Substances whose Intrinsic Equation is a Linear Function of the Pressure and Temperature. By Geo. Fras. Fitzgerald, M.A., F.R.S. .. 50

On the Morphology of Birds. By W. K. Parker, F.R.S. 52

List of Presents ... 59

On the Computation of the Harmonic Components of a Series representing a Phenomenon recurring in Daily and Yearly Periods. By Lieut.-General R. Strachey, R.E., F.R.S 61

No. 252.—February 3, 1887.

On the Waves produced by a Single Impulse in Water of any Depth, or in a Dispersive Medium. By Sir W. Thomson, Knt., LL.D., F.R.S.... 80

On the Formation of Coreless Vortices by the Motion of a Solid through an inviscid incompressible Fluid. By Sir W. Thomson, Knt., LL.D., F.R.S. .. 83

On Protorosaurus Speneri (von Meyer). By H. G. Seeley, F.R.S., Professor of Geography in King’s College, London 86

List of Presents.. 86

February 10, 1887.

An Inquiry into the Cause and Extent of a special Colour-Relation between certain exposed Lepidopterous Pupae and the Surfaces which immediately surround them. By Edward B. Poulton, M.A., of Jesus and Keble Colleges, Oxford, Lecturer in Zoology and Comparative Anatomy at St. Mary’s Hospital, Paddington 94

List of Presents ... 109
February 17, 1887.

A Record of Experiments upon the Functions of the Cerebral Cortex. By Victor Horsley, M.B., F.R.C.S., F.R.S., Professor Superintendent of the Brown Institution, and Edward Albert Schäfer, F.R.S., Jodrell Professor of Physiology in University College, London. (From the Physiological Laboratory of University College) ... 111

On Radiant Matter Spectroscopy:—Examination of the Residual Glow. By William Crookes, F.R.S., V.P.C.S. ... 111

List of Presents... 131

February 24, 1887.

Problems in Mechanism regarding Trains of Pulleys and Drums of Least Weight for a given Velocity Ratio. By Henry Hennessy, F.R.S., Professor of Applied Mathematics and Mechanism in the Royal College of Science, Dublin ... 134

A Thermal Telephone Transmitter. By Professor George Forbes 141

List of Presents... 142

No. 253.—March 3, 1887.

List of Candidates... 145

Preliminary Note on a Balanoglossus Larva from the Bahamas. By W. F. R. Weldon, M.A., Fellow of St. John's College, Cambridge 146

Studies of some New Micro-organisms obtained from Air. By G. C. Frankland, and Percy F. Frankland, Ph.D., B.Sc. (Lond.), F.C.S., F.I.C. 150

On the Limiting Distance of Speech by Telephone. By William Henry Preece, F.R.S. .. 152

The Etiology of Scarlet Fever. By E. Klein, M.D., F.R.S., Lecturer on General Anatomy and Physiology at the Medical School of St. Bartholomew's Hospital, London ... 158

List of Presents... 161

March 10, 1887.

Note on Induction Coils or "Transformers." By John Hopkinson, M.A., D.Sc., F.R.S. .. 164

Transmission of Sunlight through the Earth's Atmosphere. By Captain W. de W. Abney, R.E., F.R.S. ... 170

List of Presents... 172
March 17, 1887.

A Coal-dust Explosion. By W. Galloway .. 174

Second Note on the Geometrical Construction of the Cell of the Honey
H. Hennessy, F.R.S.. 176

The Embryology of Monotremata and Marsupialia. Part I. By
W. H. Caldwell, M.A., Fellow of Gonville and Caius College, Cam-
bridge ... 177

On the Total Solar Eclipse of August 29, 1886 (Preliminary Account).
By Arthur Schuster, F.R.S... 180

List of Presents ... 182

Contributions to the Chemistry of Chlorophyll. No. II. By Edward
Schunck, F.R.S. (Plate 1)... 184

March 24, 1887.

Preliminary Note on the “Radio-micrometer,” a New Instrument for
measuring the most Feeble Radiation. By C. V. Boys, Demonstrator
of Physics at the Science Schools, South Kensington...................... 189

Note to a Memoir on the Theory of Mathematical Form (‘Phil. Trans.’

On Ellipsoidal Current Sheets. By Horace Lamb, M.A., F.R.S., Pro-
fessor of Pure Mathematics in the Owens College, Victoria Uni-
viersity ... 196

On the Magnetisation of Iron in Strong Fields. By Professor J. A.
Ewing, B.Sc., F.R.S.E., University College, Dundee, and Mr. William
Low (Plate 2).. 200

List of Presents ... 210

March 31, 1887.

Note on the Development of Voltaic Electricity by Atmospheric Oxida-
tion. By C. R. Alder Wright, D.Sc., F.R.S., Lecturer on Chemistry
and Physics, and C. Thompson, F.C.S., Demonstrator of Chemistry, in
St. Mary's Hospital Medical School .. 212

Clausius's Formula for the Change of State from Liquid to Gas applied
to Messrs. Ramsay and Young's Observations on Alcohol. By Geo.
Fras. Fitzgerald, M.A., F.T.C.D., F.R.S., Erasmus Smith's Professor
of Natural and Experimental Philosophy in the University of
Dublin. ... 216

The Influence of Stress and Strain on the Physical Properties of Matter.
Part III. Magnetic Induction. By Herbert Tomlinson, B.A. 224

Note on a New Constituent of Blood Serum, By L. C. Wooldridge,
M.D., D.Sc., Research Scholar to the Grocers’ Company 230

Action of Caffein and Theine upon Voluntary Muscle. By T. Lauder Brunton, M.D., F.R.S., and J. Theodore Cash, M.D. .. 238

Contributions to our Knowledge of the Connexion between Chemical Constitution and Physiological Action. Preliminary Communication on the Action of certain Aromatic Bodies. By T. Lauder Brunton, M.D., F.R.S., and J. Theodore Cash, M.D. .. 240

List of Presents .. 240

On the Effect of Polish on the Reflexion of Light from the Surface of Iceland Spar. By C. Spurge, B.A., St. Catherine's College, Cambridge 242

No. 254.

April 21, 1887.

On the Principal Electric Time-constant of a Circular Disk. By Horace Lamb, M.A., F.R.S., Professor of Pure Mathematics in the Owens College, Victoria University .. 289

Some Applications of Dynamical Principles to Physical Phenomena. Part II. By J. J. Thomson, M.A., F.R.S., Fellow of Trinity College and Cavendish Professor of Experimental Physics in the University of Cambridge ... 297

Conduction of Heat in Liquids. By C. Chree, B.A., King's College, Cambridge ... 300

List of Presents .. 302

April 28, 1887.

Note on Professor Hull's Paper. By Edward T. Hardman, of the Geological Survey of Ireland .. 308

On the Homologies and Succession of the Teeth in the Dasyuridae, with an Attempt to trace the History of the Evolution of Mammalian Teeth in general. By Oldfield Thomas, British Museum (Natural History).... 310
Note on Protection in Anthrax. By L. C. Wooldridge, M.D., D.Sc., Demonstrator of Physiology, Guy’s Hospital .. 312

List of Presents... 314

No. 255.—May 5, 1887.

List of Candidates... 316

Note on the Microscopic Structure of Rock Specimens from three Peaks in the Caucasus. By T. G. Bonney, D.Sc., LL.D., F.R.S., Professor of Geology in University College, London.. 318

On the Distribution of Strain in the Earth’s Crust resulting from Secular Cooling, with special Reference to the Growth of Continents and the Formation of Mountain-chains. By Charles Davison, M.A., Mathematical Master at King Edward’s High School, Birmingham 325

Note on the Geological Bearing of Mr. Davison’s Paper. By T. G. Bonney, D.Sc., LL.D., F.R.S., Professor of Geology in University College, London.. 328

Note on some Experiments on the Viscosity of Ice. By J. F. Main, M.A., D.Sc. .. 329

The Tubercular Swellings on the Roots of the Leguminosee. By H. Marshall Ward, M.A., F.L.S., Fellow of Christ’s College, Cambridge, and Professor of Botany in the Forestry School, Royal Indian College, Cooper’s Hill ... 331

The Proteids of the Seeds of Abrus precatorius (Jequirity). By Sidney Martin, M.D. Lond., Fellow of University College, London, and Pathologist to the Victoria Park Hospital ... 331

List of Presents... 336

May 12, 1887.

Croonian Lecture.—On Parieasaurus bombardus (Owen), and the Significance of its Affinities to Amphibians, Reptiles, and Mammals. By H. G. Seeley, F.R.S., Professor of Geography in King’s College, London.... 337

List of Presents. ... 342

May 26, 1887.

The Bakerian Lecture.—On the Dissociation of some Gases by the Electric Discharge. By J. J. Thomson, M.A., F.R.S., Fellow of Trinity College, and Cavendish Professor of Experimental Physics in the University of Cambridge.. 343

List of Presents .. 350

No. 256.—June 9, 1887.

Election of Fellows ... 352

June 16, 1887.

On the Structure of the Mucilage Cells of Blechnum occidentale (L.) and Osmunda regalis (L.). By Tokutaro Ito, F.L.S., and Walter Gardiner, M.A. .. 353

On Rabies. By G. F. Dowdeswell, M.A., &c. ... 355

On Thermal Radiation in Absolute Measure. By J. T. Bottomley, M.A. 357

On Figures of Equilibrium of Rotating Masses of Fluid. By G. H. Darwin, M.A., LL.D., F.R.S., Fellow of Trinity College and Plumian Professor in the University of Cambridge .. 359

On Gasterolichenes, a new Type of the Group Lichenes. By G. Massee 370

Experiments on the Discharge of Electricity through Gases. (Second Paper.) By Arthur Schuster, F.R.S. ... 371

Contributions to our Knowledge of Antimony Pentachloride. By Richard Anschütz and P. Norman Evans.. 379

Note on the Electrodeposition of Alloys and on the Electromotive Forces of Metals in Cyanide Solutions. By Silvanus P. Thompson, D.Sc., B.A ... 387

On the true Fructification of the Carboniferous Calamites. By William Crawford Williamson, LL.D., F.R.S., Professor of Botany in the Owens College and the Victoria University ... 389

Description of a newly-excluded Young of the *Ornithorhynchus paradoxus*. By Sir Richard Owen, K.C.B., F.R.S., &c. 391

On the Nephridia and “Liver” of *Patella vulgata*. By A. B. Griffiths, Ph.D., F.R.S. (Edin.), F.C.S. (Lond. and Paris), Principal and Lecturer on Chemistry and Biology, School of Science, Lincoln ... 392

The Air of Sewers. By Professor Carnelley, D.Sc., and J. S. Haldane, M.A., M.B., University College, Dundee ... 394

On the Composition of Water by Volume. By Alexander Scott, M.A., D.Sc. ... 396

On Muscle Plasma. By W. D. Halliburton, M.D., B.Sc., Assistant Professor of Physiology, University College, London 400

Dispersion Equivalents. Part I. By J. H. Gladstone, Ph.D., F.R.S. 401

On the Rate at which Electricity leaks through Liquids which are Bad Conductors of Electricity. By J. J. Thomson, M.A., F.R.S., Fellow of Trinity College, and Cavendish Professor of Experimental Physics in the University of Cambridge, and H. F. Newall, M.A., Assistant Demonstrator in Physics, Cambridge ... 410

The Development of the Branchial Arterial Arches in Birds, with special Reference to the Origin of the Subclavians and Carotids. By John Yule Mackay, M.D., Senior Demonstrator of Anatomy, University of Glasgow .. 429

On Radiation from Dull and Bright Surfaces. By J. T. Bottomley, M.A., F.R.S.E. .. 433

Note to a Paper on the Blood-vessels of *Mustelus Antarcticus* (‘Phil. Trans.’ 1886). By T. Jeffery Parker, B.Sc. Lond., Professor of Biology in the University of Otago ... 437

On Rigor Mortis in Fish, and its Relation to Putrefaction. By J. C. Ewart, M.D., Regius Professor of Natural History, University of Edinburgh .. 438

Note on the Functions of the Sinuses of Valsalva and Auricular Appendices, with some Remarks on the Mechanism of the Heart and Pulse. By M. Collier .. 469

On Hamilton’s Numbers. By J. J. Sylvester, F.R.S., Savilian Professor of Geometry in the University of Oxford, and James Hammond, M.A. Cant. ... 470

On the Induction of the Explosive Wave and an Altered Gaseous Condition in an Explosive Gaseous Mixture by a Vibratory Movement. By Lewis T. Wright ... 472

Note on the Anatomy of Asiatic Cholera as exemplified in Cases occurring in Italy in 1886. By Charles S. Sherrington, M.B., M.A. 474

On certain Definite Integrals. No. 15. By W. H. L. Russell, F.R.S. 477
A Geometrical Interpretation of the first two Periods of Chemical Elements following Hydrogen, showing the Relations of the fourteen Elements to each other and to Hydrogen by means of a Right Line and Cubic Curve with one real Asymptote. By Rev. Samuel Haughton, M.D., F.R.S. 482

On the Force with which the two Layers of the healthy Pleura cohere. By Samuel West, M.D., F.R.C.P. ... 482

Total Eclipse of the Sun observed at the Caroline Islands on May 6, 1883. By W. de W. Abney, Captain R.E., F.R.S. 482

Note on Mr. Davison’s Paper on the Straining of the Earth’s Crust in Cooling. By G. H. Darwin, M.A., F.R.S., Plumian Professor of Astronomy and Experimental Philosophy in the University of Cambridge .. 483

A further minute Analysis, by Electric Stimulation, of the so-called Motor Region of the Cortex Cerebri in the Monkey (Macacus sinicus). By Charles E. Beevor, M.D., and Professor Victor Horsley, F.R.S., B.S., F.R.C.S. ... 483

On the present Position of the Question of the Sources of the Nitrogen of Vegetation, with some new Results, and preliminary Notice of new Lines of Investigation. By Sir J. B. Lawes, Bart., F.R.S., and J. H. Gilbert, M.A., LL.D., F.R.S., Sibthorpian Professor of Rural Economy in the University of Oxford ... 483

List of Presents.. 483

Note on some Experiments on the Viscosity of Ice. By J. F. Main, M.A., D.Sc. .. 491

No. 257.

The Air of Sewers. By Professor Thomas Carmelley, D.Sc., and J. S. Haldane, M.A., M.B., University College, Dundee.......................... 501

Index ... 523

Errata... 532

Obituary Notices:—

John Theophilus Boileau.. i

Sir Walter Elliot, K.C.S.I., LL.D. ... viii

Sir Joseph Whitworth .. ix

Dr. Allen Thomson ... xi
preserved in shale, of *Sphenopteris elegans*, which display regular transverse ridges crossing their stems and branches, which seem to have been caused by the presence of bands of some hard substance, corresponding exactly with those seen in the outer bark of both the Heterangiums. These, at all events, are the only examples of fossil Carboniferous plants, in which structures comparable with those of the Heterangium stems have been discovered. It is not without significance that *H. Grevii* has not only been found in the Westphalian deposits of Pith Vollmond, but a German locality has furnished Professor von Weiss, of Berlin, with specimens of *Sphenopteris elegans*, having the same kind of bark as those found in Scotland. The author suggests that the Heterangiums may possibly have been ancestral forms, having exogenous stems and fern-like foliage, which may have bequeathed the former features to some of the modern Cycads, and the latter to the Ferns, the living Stangeria having retained some of the features of both.

Presents, January 6, 1887.

Transactions.

Halle:—Verein für Erdkunde. Mitteilungen. 1886. 8vo. *Halle*.

The Union.

The Museum.
Transactions (continued).

The Society.

The Society.

The Society.

The Society.

Institution of Civil Engineers. Abstracts. Nos. 1–3. 8vo. 1886.

The Institution.

The Institution.

The Society.

The Institute.

The Institution.

The Society.

The Society.

The Society.

The Academy.
Transactions (continued).

Sydney:—Linnean Society, N.S.W. Abstracts of Proceedings, April to June, 1886. 8vo. The Society.
Observations and Reports.

Karlsruhe:—Sternwarte. Veröffentlichungen. Heft 2. 4to. Karlsruhe 1886. The Observatory.

Journals.

Analyst (The). July to December, 1886. 8vo. London 1886. The Editor.

Athenæum (The). July to December, 1886. 4to. London 1886. The Editor.

Canadian Record of Science. Vol. II. No. 4. 8vo. Montreal 1886. The Editor.

Natural History Society. Montreal.

Chamber of Commerce Journal. May to December, 1886. 4to. London. The Editor.

Chemical News (The). July to December, 1886. 8vo. London. The Editor.

Educational Times (The). July to December, 1886. 4to. London. The College of Preceptors.

Indian Antiquary (The). May to December, 1886. 4to. Bombay 1886. The Editors.

Industries. May to December, 1886. 4to. London. The Editor.

Machinery Market (The). July to December, 1886. 4to. London. The Editor.

Journals (continued).
Compass Observatory, Cronstadt.
Naturalist (The). July to December, 1886. 8vo. Leeds.
The Editors.
The Editor.
The Editor.
The Editors.
Imperial Observatory.
The Editor.
Mr. Symons, F.R.S.
The Editors.

The Author.
The India Office.
Bataviaasch Genootschap van Kunsten en Wetenschappen.
Messrs. Friedländer.
Gilbert (Prof.), F.R.S. Remarques sur la Relation qui existe entre les Sommes de Température et la Production Agricole. 8vo. Genève 1886.
The Author.
Gill (T.) Bibliography of South Australia. 8vo. Adelaide 1885.
The Agent-General.
Goppelsroeder (F.) Ueber die Darstellung der Farbstoffe. 8vo. Reichenberg 1885.
The Author.
The Author.
Monaco (Prince Albert de) Sur le Gulf-Stream. 8vo. Paris 1886.
The Author.
Mr. J. W. Hulke. On Polacanthus Foxii. [Jan. 13, 1886.]

Mueller (Baron von), F.R.S. Description and Illustrations of the Myoporinous Plants of Australia. Lithographs. 4to. Melbourne 1886. The Author.

Rambaut (A. A.) On the Possibility of determining the Distance of a Double Star. 8vo. Dublin 1886; On the Reduction of Bessel’s Precessions to those of Struve. 8vo. London 1886. The Author.

Rayleigh (Lord), Sec. R.S. Electrical Measurements. 4to. [London] 1886. The Author.

Spencer (J. W.) Niagara Fossils. 8vo. St. Louis 1884. The Author.

January 13, 1887.

Professor STOKES, D.C.L., President, in the Chair.

The Presents received were laid on the table, and thanks ordered for them.

The Right Hon. Hardinge Stanley Giffard, Lord Halsbury (Lord High Chancellor), whose certificate had been suspended as required by the Statutes, was balloted for and elected a Fellow of the Society.

The following Papers were read:

I. “Supplementary Note* on Polacanthus Foxii, describing the Dorsal and some parts of the Endoskeleton imperfectly known in 1881.” By J. W. HULKE, F.R.S. Received December 14, 1886.

(Abstract.)

The author describes the large dorsal shield, which has been recently restored and now exhibits the grouping of the keeled and tuberculated fragments, which in their disconnected and scattered

* See 'Phil. Trans.' vol. 172 (1881).
1. The crimson line is due to alumina, but it is capable of being suppressed by an accompanying earth which concentrates towards one end of the fractionations.

2. The crimson line is not due to alumina, but is due to the presence of an accompanying earth concentrating towards the other end of the fractionations.

3. The crimson line belongs to alumina, but its full development requires certain precautions to be observed in the time and intensity of ignition, degree of exhaustion, or its absolute freedom from alkaline and other bodies carried down by precipitated alumina, and difficult to remove by washing; experience not having yet shown which of these precautions are essential to the full development of the crimson line and which are unessential.

4. The earth alumina is a compound molecule, one of its constituent molecules giving the crimson line. According to this hypothesis alumina would be analogous to yttria.

It is not unlikely that a chemist wishing to obtain alumina of exceptional purity might submit it to a series of operations, akin to fractionation, which would have the effect of giving earths phosphorescing either with a strong crimson line, or with little or no crimson line; and either of these samples of alumina might be looked upon by him as pure. It is possible that some such explanation as this may be at the bottom of the contradictory statements respecting the crimson line of alumina.

Transactions.

Transactions (continued).

hague 1886; Oversigt. 1886. No. 2. 8vo. Copenhagen 1886. The Academy.

Florence:—R. Istituto di Studi Superiori Pratici e di Perfezion-

Manchester:—Public Free Libraries. Thirty-fourth Annual Re-
port. 1885–86. 8vo. Manchester. The Committee.

Nottingham:—University College. Calendar. 1886–87. 8vo. Not-
tingham. The College.

Transactions (continued).

Bell (Clark) Classification of Mental Diseases as a basis for International Statistics regarding the Insane. 8vo. [New York] 1886. The Author.

Faye (M.) Remarques au sujet des récentes Expériences de M. Hirn sur la Vitesse d’Écoulement des Gaz. 4to. Paris 1885. The Author.

Fudzisawa (Rikitaro) Ueber eine in der Wärmeleitungsthesorie auftretende nach den Wurzeln einer transcendenten Gleichung fortschreitende unendliche Reihe. 4to. Strassburg 1886. The Author.

Hartlaub (G.) Description de Trois Nouvelles Espèces d’Oiseaux. 8vo. Bruxelles 1886. The Author.

Lemoine (Émile) Exercices divers de Mathématiques. 8vo. Paris 1885. With twelve other Pamphlets and Excerpts. The Author.

Omboni (Giovanni) Di alcuni Insetti Fossili del Veneto. 8vo. Venezia 1886. The Author.

Pickering (E. C.) Observations of Variable Stars in 1885. 8vo. 1886; A New Form of Polarimeter. 8vo. 1886; Accurate Mountain Heights. 8vo. 1885. The Author.

Siemens (Frederick) On Dissociation Temperatures with special reference to Pyrotechnical Questions. 8vo. London 1886. The Author.

Waddell’s Iron Railroad Bridges for Japan, Reviews on, entitled “American versus English Methods of Bridge Designing.” 8vo. Tókyó 1886. The Editor, Japan Mail.

Wolf (Rudolf) Astronomische Mittheilungen. LXVI-LXVII. 8vo. 1886. Dr. Wolf.

Transactions.

Giessen:—Universität. Thesen, &c. Forty-eight in all. 8vo. and 4to. *Giessen*, &c. 1884–86. The University.

Heidelberg:—Universität. 10 Inaugural-Dissertationen with seven other pamphlets. 8vo. and 4to. *Heidelberg*, &c. 1884–85. The University.

Münster:—Königliche Akademie. Inaugural-Dissertationen, &c., 26 in all. 8vo. and 4to. 1885–86; Indices Lectionum. 4to. 1886–87. The Academy.

Transactions (continued).

Observations and Reports.
Chile:—Reconocimiento del Rio Buta-Palena i del Canal Fallos. 8vo. Santiago de Chile 1886. Oficina Hidrográfica.

Melnikow (M.) Geologische Erforschung des Verbreitungsgebietes der Phosphorite am Dnjester. 8vo. 1885. The Author.
Shelford (W.) and A. H. Shield. On some points for the consideration of English Engineers with reference to the Design of Girder Bridges. 8vo. London 1886. The Authors.

January 27, 1887.

Professor G. G. STOKES, D.C.L., President, in the Chair.

The Presents received were laid on the table, and thanks ordered for them.

The following Papers were read:—

I. "On a Perspective Microscope." By GEORGE J. BURCH.
Communicated by J. RUSSELL REYNOLDS, M.D., F.R.S.
Received January 7, 1887.

(Abstract.)

In 1874 the author discovered a form of microscope giving constant magnification along the optic axis, so that objects were shown by it in microscopic perspective.

By writing \((f_1 + f_2 + H)\) for the distance between two thin lenses, he obtained for the formula of the system

\[
\frac{f_2(f_2 + H)u - f_1 f_3(f_1 + f_3 + H)}{Hu - f_1(f_1 + H)} = v;
\]

\(u\) being the distance from the object to the first lens, and \(v\) that from the second lens to the image.

Putting \(H = 0\) in this equation, three things result.
1. \(dv/du\), which represents the longitudinal magnification, becomes constant, namely \(-(f_2/f_1)^2\);
2. The lateral or angular magnification, \(f_2/f_1\), is also constant;
3. A picture of an object so magnified, drawn with the camera lucida, when viewed from a distance \(f_2/f_1\) times less than that at which it was drawn has the perspective belonging to an object magnified \((f_2/f_1)^2\) times.

The distance at which the eye must be placed is great, but may be reduced by employing three lenses, the distance between the first and
Transactions.
University of London. Accessions to the Library, 1876–86. 8vo. London 1886. The University.

Observations and Reports.
Observations, &c. (continued).

Journals.

Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche. Febbraio, 1886. 4to. Roma.
The Prince Boncompagni.

Meteorologische Centralanstalt, Vienna.

Mittheilungen aus der Zoologischen Station zu Neapel. Band VII. Heft 1. 8vo. Berlin 1886. The Station.

Revista de los Progressos de las Ciencias Exactas, Fisicas y Naturales. Tomo XXVII. Nos. 7-9; Tomo XXII. No. 1. 8vo. Madrid 1886. Academia de Ciencias.

Klein (Sydney T.) Hunting among the Lepidoptera and Hymenoptera of Middlesex. 8vo. Bath 1887. The Author.

Comité Géologique, St. Petersburg.

III. "On Proterosaurus Speneri (von Meyer)." By H. G. Seeley, F.R.S., Professor of Geography in King's College, London. Received February 3, 1887.

(Abstract.)

The author gives an account of the scientific history of Proterosaurus, and states the interpretations of its structure given by Cuvier, von Meyer, Sir R. Owen, and Professor Huxley.

In Part II he describes the type specimen in the Museum of the Royal College of Surgeons. In the skull characters are given of the cerebral cavity, the supra-occipital, parietal, frontal, pre-frontal, nasal, and premaxillary bones. A restoration is made of the skull and the teeth are shown to be ankylosed to the jaw. On the palate the vomer, palatine, and pterygoid bones are described and shown to have all been armed with minute teeth. The pterygoid bone was strongly united to the quadrato bone. The lower jaw and hyoid bones are also described.

In the vertebral column a description is given of the second to the seventh cervical vertebrae, of sixteen dorsal vertebrae, two sacral vertebrae, and twenty-three caudal vertebrae.

The femur, tibia and fibula and foot are also described. The skin is found to have been defended with a bony armour.

In Part III comparison is made between the type and other specimens which have been referred to it, with the result that some are regarded as indicating different species while others indicate different genera.

In Part IV a comparison is made to show the resemblances of Proterosaurus with other reptiles, in the several regions of the skeleton; with the result that the Proterosauria is regarded as a distinct division of the Reptilia, showing resemblances to many of the highly specialised orders and to some low types.

Transactions.

The University.

The University.
Transactions (continued).

Observations and Reports.

Christiania:—Fjerde Beretning om Bygdø Kongsgaard med Tillæg. 4to. Christiania 1886. The University, Christiania.
Observations, &c. (continued).

Melbourne:—Department of Mines. Reports of the Mining Registrars, quarter ended September, 1886. Folio. Melbourne 1886. The Department.

Transactions.

Observations and Reports.

Observations, &c. (continued).

Zürich:—Schweizerische Meteorologische Central-Anstalt. Anna- len. 1885. 4to. Zürich [1886].

Journals.

Compass Observatory, Cronstadt.

Naturalist (The). No. 139. 8vo. London 1887. The Editors.

The Editor.

Bekker (Dr.) Ueber den Streit der historischen und der filoso- fischen Rechtsschule. 4to. Heidelberg 1886.

The University, Heidelberg.

Lipschitz (R.) Transformation d’une Somme de Deux ou de Trois Carrés. 4to. Paris [1887].

The Author.

The Author.
of them fall near lines in the spectra of my Gβ and Gê. At first sight it might appear that his and my spectra were due to the same bodies, but according to M. de Boisbaudran, the chemical properties of the earths producing them are widely distinct. These giving phosphorescent lines by my method occur at the yttrium extremity of the fractionation, where his fluorescent bands are scarcely shown at all; whilst his fluorescent phenomena are at their maximum quite at the terbium end of the fractionation, where no yttrium can be detected even by the direct spark, and where my phosphorescent lines are almost absent.

Presents, February 17, 1887.

Transactions.

Kingston, Canada:—University of Queen's College. Calendar. 1886–87. 8vo. _Toronto_ 1886; Examination Papers. 1886. 8vo. _Toronto._ The University.

Louvain:—Université Catholique. Annuaire. 1887. 12mo. _Louvain_; Thèses. 1885–86. 8vo. _Louvain_; Recherches Analytiques sur la Diffraction de la Lumière. 4to. _Bruxelles_ 1886; Sur les
Transactions (continued).

No. 2. 8vo. New York. The Society.

Transactions (continued).

The Academy.

Observations and Reports.

Ministères de la Marine et de l’Instruction Publique.

The Meteorological Office.

The Commission.

Supplement. 8vo. London 1886.

The Medical Officer.

The Office.

New York:—Columbia College. Library. 2nd and 3rd Annual Reports. 8vo. New York 1886.

The College.

The Commission.

The Author.

The Author.

The Author.

Kops (Jan) Flora Batava. Afl. 275–276. 4to. Leiden [1886].

The Netherlands Legation.

Mueller (Baron von), F.R.S. Iconography of Australian Species of Acacia and Cognate Genera. 1st Decade. 4to. Melbourne 1887.

The Author.

Prince (C. L.) The Summary of a Meteorological Journal, 1886. Folio. [Crowborough 1887.]

The Author.

Saint-Lager (Dr.) Histoire des Herbiers. 8vo. Paris 1885.

The Author.

The Authors.
Presents.

Transactions.

The University.

The Society.

The College.

The School.

The Society.

The Association.

The University.

The Society.

The Council.
Transactions (continued).

Tokio:—Imperial University of Japan. Calendar. 1886–87. 8vo. Tōkyō 1886.

Vienna:—Verein der Geographen an der Universität. Bericht über das XI. Vereinsjahr. 8vo. Wien 1886.

Journals.

Indian Antiquary (The) Vol. XV. Part 190. 4to. Bombay 1886.

New York Medical Journal. Vol. XLV. No. 5. 4to. 1887.

VOL. XLII.
Journals (continued).

The Observatory of Rio.

The Author.

Prof. Conwentz.

The Author.

Mr. G. Dimmock.

Prof. T. R. Jones, F.R.S.

The Author.

Pickering (E. C.) Heights of the White Mountains. 8vo. [1887.]

The Author.

Prince (C. L.) Summary of a Meteorological Journal. 1885. Folio.

[Crowborough 1886.]

The Author.

The Author.

The Author.

The Author.

Wright (T.), F.R.S. Monograph on the Lias Ammonites of the British Islands. 4to. London 1878-86.

Bequeathed by the Author.
scarlatina the same micrococcus was recovered by cultivation, possessing all the characters shown by the cultures of the micrococcus of the Hendon cows, and of the cases of human scarlatina.

It must be evident from these observations that the danger of scarlatinal infection from the disease in the cow is real, and that towards the study and careful supervision of this cow disease all efforts ought to be directed in order to check the spread of scarlet fever in man. It is also obvious that in the agricultural interest alone investigations of this cow disease are greatly called for.

Presented, March 3, 1887.

Transactions.

Transactions (continued).

Observations and Reports.

Observations, &c. (continued).

The Director.
The Bureau.
The Observatory.

The Author.

M. Cassagnes.

The Author.

The Author.

Loomis (E.) Contributions to Meteorology. II. 4to. New Haven 1887.
The Author.

The Editor.
Pritchard, and others. He further shows that observations made by people who are colour-blind in the red tend to diminish the value of the coefficient of transmission, and that the difference between stellar and solar light cannot account for the apparent discrepancy. It would appear that Professor Pritchard's maximum value for the coefficient of transmission at Cairo does not differ much from his.

The values of the different colours in the spectrum which Rood has adopted from Vierordt's method are then discussed, and corrected according to the author's determination of the values on a day in June.

A series of tables close the paper, in which the original observations and the deduced values are given.

Transactions.

Transactions (continued).

Vienna:—K. Akademie der Wissenschaften. Anzeiger. 1887.
Nr. I-V. Svo. [Wien].

Watford:—Hertfordshire Natural History Society. Transactions.

Airy (Sir G. B.), F.R.S. Numerical Lunar Theory. 4to. London
1886. The Astronomer Royal.

Andrews (T.) Effect of Temperature on the Strength of Railway
Axles. Part II [In Manuscript]. Folio [1887]. The Author.

Lühmann (O. von) Sprache und Schrift. (Two copies). 12mo.
[Greifswald 1887]. The Author.

Newton (A.), F.R.S., and J. W. Clark. The Woodwardian Professor
and the Sedgwick Memorial Museum. 8vo. Cambridge 1887.
The Authors.

Sasse (E.) Die Erhaltung der Empfindungs-Energie. 8vo. Berlin
1887. The Author.

The Author.

Shaw (H. S. Hele). Cantor Lectures on Friction. 8vo. London
1886. The Author.

Stolipine (D.). Essais de Philosophie des Sciences. 8vo. Genève
1886. The Author.

Photographs of Cape Observatory, Exterior and Interior; with
Photograph of Stars about η Argus, and other Photographic
Star-maps. Dr. Gill, F.R.S.

Mezzotinto Engraving of Thomas, Lord Bishop of Rochester, and
Thomas Sprat, A.M., Archdeacon of Rochester.

Mr. Eldridge Spratt.
that although the lines seem to be in the same position their relative intensity has greatly altered. The strongest corona line during the last eclipse had a wave-length of about 4232; it is slightly but distinctly less refrangible than the strong calcium line at 4226.

The measurement of the photographs is very fatiguing to the eyes; and it is only when these are in exceptionally good condition that the work can be done with any degree of accuracy. The delay in bringing out a full report is solely due to this difficulty.

The second spectroscope had its slit placed so as to take a radial section of the corona. It had one large prism giving a theoretical resolving power of 11·4; slightly larger therefore than the two-prism spectroscope.

The film was one prepared by Captain Abney so as to be more sensitive in the green than the ordinary plates.

The photograph obtained is faint, but I believe will ultimately give good results.

A good drawing of the corona was obtained by Captain Maling at the station occupied by Captain Darwin and myself.

The plates were prepared by Captain Abney, whose valuable help I have had in the whole of the preliminary arrangements.

Observations and Reports.

Meteorological Office, Bombay.
Observations, &c. (continued).

The Library.

The Director.

The Commission.

The Observatory.

The Commission.

The Survey.

Ministère des Travaux Publics.

The University.

The Author.

Jones (T. Rupert), F.R.S. History of the Sarsens. 8vo. [Devizes] 1887.

The Author.

Seacchi (A.) I Composti Fluorici dei Vulcani del Lazio. 4to. [Napoli] 1887; Le Eruzioni Polverose e Filamentose dei Vulcani. 4to. Napoli 1886; Sopra un Frammento di Antica Roccia Vulcanica. 4to. Napoli 1886.

The Author.

The Author.
method should be applied to the manganese steel whose non-magnetic quality under ordinary conditions has been already commented on by himself as well as by Mr. J. T. Bottomley and Professor Barrett. In connexion with the values of \mathcal{B} reached by other observers, Professor J. J. Thomson informs me that in some recent experiments by himself and Mr. H. F. Newall on the effect of cutting a magnet at right angles to the lines of force, an induction of 28,000 was found on one occasion.—J. A. E.]

Transactions.

Observations and Reports.

Observations, &c. (continued).

The Office.

Milan:—R. Osservatorio Astronomico di Brera. Osservazioni. 1886. 4to. Milano [1887]. The Observatory.

Journals.

Société Hollandaise des Sciences.

The Horological Institute.

Indian Antiquary (The) Vol. XVI. Part 192. 4to. Bombay 1887.

The Editors.

The Publishing Committee.

The Editor.

Naturalist (The) No. 140. 8vo. London 1887. The Editors.

The Editor.

The Publishers.

The Editor.
VII. "Contributions to our Knowledge of the Connexion between Chemical Constitution and Physiological Action. Preliminary Communication on the Action of certain Aromatic Bodies." By T. LAUNDER BRUNTON, M.D., F.R.S., and J. THEODORE CASH, M.D. Received March 24, 1887.

The distinctive action of the lower members of the fatty series is their stimulant and anaesthetic action on the nerve-centres.

The members of the aromatic series also affect the nervous system, but they appear to affect the motor centres more than the sensory, so that instead of producing anaesthesia, like the members of the fatty series, they tend rather to produce tremor, convulsions, and paralysis. Benzene, chlorobenzene, bromobenzene, and iodobenzene are all somewhat similar in their action on frogs; the halogen radicals not modifying the action of the benzene to such an extent as they do in the case of ammonium salts. The voluntary muscles are weakened by them, and there is a slight tendency to paralysis of the motor nerves; but the action is chiefly exerted upon the brain and spinal cord. The brain is first affected, as shown by general lethargy and disinclination to move. Next the cord is affected; motions are imperfectly performed, and there is a tendency to general tremor on movement resembling that observed in disseminated sclerosis; sometimes, however, the tremor is observed independently of movement.

The addition of hydroxyl to the benzene nucleus intensifies the convulsant action, so that oxybenzene (carbolic acid) and dioxybenzene cause convulsions in frogs, and trioxybenzene causes jerkings, though of a slighter character.

The Society then adjourned over the Easter Recess to Thursday, April 21st.

Presents, March 31, 1887.

Transactions.

Transactions (continued).
	Middlesex Hospital. Reports. 1885. 8vo. London 1887. The Hospital.

--- | --- | ---
Water | 0.0747 | 0.0815
Solution sulphuric acid, No. 1 | 0.0759 | —
" | No. 2 | 0.0767 | —
" | No. 3 | 0.0765 | —
" | No. 4 | 0.0778 | —
Methylated spirit | 0.0354 | 0.0346
Bisulphide of carbon | 0.0322 | —
Paraffin oil | 0.0264 | 0.0273
Turpentine oil | — | 0.0189

The temperature of the various experiments differed somewhat, but as a rule was a little under 20° C. The difference of temperature in the two series of experiments on water tends partly to explain the discrepancy in the above results, as the results of previous observers indicate a considerable rise in conductivity with the temperature. For water and the methylated spirit results of a confirmatory nature were obtained by the larger apparatus.

The experiments were conducted in the Cavendish Laboratory.

Transactions.

Present, April 21, 1887.

Transactions (continued).

Journals.

Naturalist (The). No. 141. 8vo. London 1887.
Revista do Observatorio. Anno II. Num. 3. 8vo. Río de Janeiro 1887.
Note added April 27th.

The following experiments give additional weight to the previously described results.

In the one case the anthrax grew with very great rapidity in the culture fluid, and the clear filtrate contained but a very small quantity of proteid matter. Forty cubic centimetres of this fluid was injected into a rabbit, and the rabbit immediately inoculated in the ear with virulent anthrax blood; in two days there was very marked œdema at the seat of inoculation, which increased to an enormous extent during the next few days, and then gradually subsided. The rabbit is now perfectly well, twenty-four days after the inoculation.

In the second case the growth of anthrax had been very slight; 20 c.c. of the filtered fluid was injected, and the animal immediately inoculated in the leg with virulent anthrax blood. In three days there was marked œdema at the seat of inoculation. This spread up the leg to the back, so that there was enormous œdema occupying nearly the whole posterior part of the animal; this persisted for ten days, and then gradually subsided. The animal is quite well, twenty-eight days after inoculation.

These cases are of interest, since they are obviously instances of partial protection. The animals are still affected by anthrax, but it is only as a severe local affection, and does not kill them.

Observations and Reports.

Tiflis:—Physikalisches Observatorium. Meteorologische Beobachtungen, 1885. 8vo. Tiflis 1886. The Observatory.

Transactions.

The Academy.

The Society.

The Society.

The Institution.

The Society.

The Society.

The Society.

The Society.

The Society.

The Committee.

The Institute.

Observations and Reports.

The Meteorological Office.
Observations, &c. (continued).

Die "Osterreichische Polarstation Jan Mayen. Beobachtungs-
Ergebnisse. Herausg. von der Kaiserl. Akad. der Wissen-
schaften. Band II. Abth. 2. 4to. Wien [1887].

The Academy.

London:—Colonial and Indian Exhibition, 1886. Reports on the
Colonial Sections. 8vo. London 1887.

The Society of Arts.

The Observatory.

1886. 8vo. Washington.

The Comptroller.

States, 1885. 8vo. Washington 1886.

The Survey.

May 12, 1887.

Professor G. G. STOKES, D.C.L., President, in the Chair.

The Presents received were laid on the table, and thanks ordered
for them.

The following Croonian Lecture was delivered:—

CROONIAN LECTURE.—"On Parieasaurus bombidens (Owen), and
the Significance of its Affinities to Amphibians, Reptiles,
and Mammals." By H. G. SEELEY, F.R.S., Professor of
Geography in King's College, London. Received April 21,
1887.

(Abstract.)

The author gives a short account of the literature of Parieasaurus,
and describes a skeleton in the British Museum, received from the
Karoo deposits of South Africa in 1878.

The head has the external bones pitted and grooved as in Labyrin-
thodonts and Crocodiles, and mucus canals are developed between
the nares and orbits such as characterise Labyrinthodontia. The
palate, as evidenced by Parieasaurus serridens (Owen), is essentially
Anomodont in structure. The dentition, with some distinctive features,
approximates to that of Dinosaur's and Crocodiles, but though the
teeth are in sockets they are cemented to the jaw by bone.
then the community of structure with mammals which appears in the pelvis in Parieasaurus, and is variously developed in other parts of the skeleton, in many allied genera of Anomodontia and Theriodontia, must similarly be held to establish a common origin for these mammalian and reptilian structures by inheritance from amphibian ancestors.

The Society adjourned over Ascension Day to Thursday, May 26th.

Transactions.

May 26, 1887.

Professor G. G. STOKES, D.C.L., President, in the Chair.

The Presents received were laid on the table, and thanks ordered for them.

Professor Archibald Liversidge (elected 1882) was admitted into the Society.

The following Papers were read:—

I. THE BAKERIAN LECTURE.—"On the Dissociation of some Gases by the Electric Discharge." By J. J. THOMSON, M.A., F.R.S., Fellow of Trinity College, and Cavendish Professor of Experimental Physics in the University of Cambridge. Received May 26, 1887.

(Abstract.)

The gases considered are iodine, bromine, chlorine, and nitrogen tetroxide. The effects of the spark on iodine and bromine were investigated in two ways. In the first method the iodine was placed in a tube from which the air had been exhausted, and which was furnished with a gauge which served to measure the changes of pressure in the tube. The liquid in the manometer was sulphuric acid, and in order to avoid any disturbance due to the absorption of
was not aware that importance was attached to this point, but I have since repeated many of my former observations, holding the pillar in the hand. The results are certainly stronger, but the extra heat imparted to the apparatus is in my opinion sufficient to account for this. M. Thore brings forward many new and ingeniously devised experiments to prove that heat cannot be considered the cause of the movement. He exposes the instrument to the full sun and then brings it into a cool dark room; he suspends it over boiling water; he places a large block of ice between the cylinder and the observer; he similarly interposes metallic vessels full of boiling water between the cylinder and observer (the observer not moving from his place in front), and he tries the experiment in a hot chamber alternately moist and dry, without finding the regularity of the movements interfered with. I have tried most of these, and obtained results corroborating M. Thore's, but I have also tried the experiment of quietly bringing near to the stationary cylinder a bottle of hot water and observing the movement from a safe distance through a telescope, and I find that the hot bottle is able to effect rotation as well as the observer.

Among the curious observations mentioned by M. Thore is this:—Placing the pillar in front of the cylinder (between it and the observer), if the pillar is held with the right hand the movement is clockwise, and if the left hand is used the rotation is counter-clockwise. The right hand is stronger in its effects than the left hand in the proportion of 2 to 1.

M. Thore has given in addition a large number of curious and interesting observations, using two, three, and more movable cylinders and recording their movements under a great variety of circumstances. I admit I do not see at once how all these are to be explained on the molecular bombardment theory. But this theory has not yet explained all the anomalous results I have recorded in my papers on "Repulsion resulting from Radiation," although I believe it capable of doing so; and I therefore think that it is not necessary to call upon a new force to explain any of M. Thore's results which radiation does not yet seem able to account for.

The Society adjourned over the Whitsuntide Recess to Thursday, June 9th.

Presents, May 26, 1887.

Transactions.
Buckhurst Hill:—Essex Field Club. The Essex Naturalist. No. 4. 8vo. Buckhurst Hill 1887.
The Club.
Leeds:—Naturalists' Club. Transactions. 1886. 8vo. Leeds 1886.
The Club.
Transactions (continued).

Albrecht (Dr. P.) Verläuf der Nervenstrom in geschlossener Strömbahn? 8vo. Erlangen 1887. With two other excerpts in 8vo. The Author.

Bagnoli (U.) Teorie Fondamentali dell' Elettricità. Sm. 8vo. Milano 1887. The Author.

Fleming (S.) Documents in reference to the General Adoption of the Twenty-four Hour Notation on the Railways of America. 8vo. Ottawa 1887; Time-Reckoning for the Twentieth Century. 4to. Montreal 1886. The Author.

Folmer (N.) Rebus over het Licht, het Beeld en de Prismatische Kleuren; in 500 Figuren op 60 Platen. Folio and 8vo. Groningen [1887]. The Author.

VOL. XLII.

2 D
XXXVI. "Note on Mr. Davison's Paper on the Straining of the Earth's Crust in Cooling." By G. H. DARWIN, M.A., F.R.S., Plumian Professor of Astronomy and Experimental Philosophy in the University of Cambridge. Received June 15, 1887.

[To be published in the 'Philosophical Transactions,' in conjunction with Mr. Davison's paper.]

XXXVII. "A further minute Analysis, by Electric Stimulation, of the so-called Motor Region of the Cortex Cerebri in the Monkey (Macacus sinicus)." By CHARLES E. BEEVOR, M.D., and Professor VICTOR HORSLEY, F.R.S., B.S., F.R.C.S. Abstract received June 16, 1887.

[Publication deferred.]

XXXVIII. "On the present Position of the Question of the Sources of the Nitrogen of Vegetation, with some new Results, and preliminary Notice of new Lines of Investigation." By Sir J. B. LAWES, Bart., F.R.S., and J. H. GILBERT, M.A., LL.D., F.R.S., Sibthorpiian Professor of Rural Economy in the University of Oxford. Abstract received June 16, 1887.

[Publication deferred.]

XXXIX. "On Diameters of Plane Cubics." By JOHN J. WALKER, M.A., F.R.S. Received June 16, 1887.

[Publication deferred.]

The Society adjourned over the Long Vacation to Thursday, November 18th.

Transactions.

The University.

Transactions (continued).

Bremen:—Naturwissenschaftlicher Verein. Abhandlungen. Band
The Verein.

Brünn:—Naturforschender Verein. Verhandlungen. Band XXIII.
Hefte 1-2. 8vo. *Brünn* 1885. The Verein.

The Academy.

Vol. LV. No. 4. 8vo. *Calcutta* 1884, 1887; Proceedings. 1886.

No. 1. 8vo. *Copenhague; Mémoires (Classe des Sciences).
Vol. IV. No. 3. 4to. *Copenhague* 1887. The Academy.

Danzig:—Naturforschende Gesellschaft. Schriften. Band VI.

Leide 1887. The School.

Band II. (Zweite Hälfte.) Band III. Band V. Nr. 1-2. 8vo.
Frankfurt a. Oder 1885-7; Societatum Litterae. 1887. No. 3.

Halifax:—Nova Scotian Institute of Natural Science. Proceedings
The Institute.

Jena:—Medizinisch-Naturwissenschaftliche Gesellschaft. Jenaische
Jena 1887. The Society.

Königsberg:—Physikalisch-Ökonomische Gesellschaft. Schriften.

Transactions (continued).

The Society.

The Trustees.

The Society.

The Association.

The Society.

The Institution.

The Society.

The Society.

The Association.

The Society.

The Society.

The Club.

The Society.

The Society.

The Society.

The Institute.
Transactions (continued).

Lund:—Universitet. Års-Skrift. Tom. XXII. 1–2. 4to. Lund 1886-7. The University.

Transactions (continued).

Observations and Reports.

Calcutta:—Meteorological Observations recorded at Six Stations in India. 1886. November to December. 4to. Calcutta. The Meteorological Office, India.
Observations, &c. (continued).

The Survey.

The Survey.

Imperial Russian Geographical Society.

The Committee.

The Library.

The Observatory.

Journals.

The Editor.

The Editor.

The Editors.

Analyst (The) January to June, 1887. 8vo. London.

The Editor.

The Editor.

The Editor.

Archives Néerlandaises des Sciences Exactes et Naturelles. Tome XXI. Livr. 4. 8vo. Harlem 1887.

Société Hollandaise des Sciences.

Dr. Richardson, F.R.S.

Astronomie (L') Janvier—Juin, 1887. 8vo. Paris.

The Editor.
Journals (continued).

The Editor.

Athenaeum (The) January to June, 1887. 4to. London.
The Editor.

Builder (The) January to June, 1887. Folio. London.
The Editor.

Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche. Tomo XIX. Maggio—Giuagno, 1886. 4to. Roma.
The Prince Boncompagni.

Natural History Society, Montreal.

Chemical News. January to June, 1887. 4to. London.
Mr. W. Crookes, F.R.S.

Educational Times (The) January to June, 1887. 4to. London.
The College of Preceptors.

Electrical Review (The) January to June, 1887. Folio. London.
The Editor.

The Horological Institute.

The Publishing Committee.

Industries. March to June, 1887. Folio. London. The Editor.

Medical Register (The) and Dentists' Register. 1887. 8vo. London.
The General Medical Council.

Mittheilungen aus der Zoologischen Station zu Neapel. Band VII.
Heft 2. 8vo. Berlin 1887.
The Station.

The Editor.

Notes and Queries. January to June, 1887. 4to. London.
The Editor.

Observatory. January to June, 1887. 8vo. London.
The Editors.

Paris. The Editor.

Mr. Symons, F.R.S.

The Editors.

Dawson (Dr. G. M.) Note on the Occurrence of Jade in British Columbia. 8vo. Montreal 1887.

Hall. A Compendious Vocabulary of Sanskrit, in Divanagari and Roman Characters. 4to. London 1885.

Marey (J.) Le Mécanisme du Vol des Oiseaux étudié par la Photochronographie. 4to. Paris 1887. With one other excerpt.

Mueller (Baron F. von), F.R.S. Iconography of Australian Species of Acacia and Cognate Genera. Third Decade. 4to. Melbourne 1887.

Rüdorff (Friedrich) Die Fortschritte der Chemie in den letzten 25 Jahren: Rede. 4to. Berlin 1887.

Scharff (R.) On Otenodrilus parvulus, nov. spec. 8vo. London 1887.

Warner (Dr. F.) Three Lectures on the Anatomy of Movement:
On the Viscosity of Ice.

Wernicke (Dr. A.) Die Grundlage der Euklidischen Geometrie des Maasses. 4to. Braunschweig 1887. The Author.

Wolf (Dr. R.) Astronomische Mittheilungen. No. 68. 8vo. Zürich 1887. The Author.

“Note on some Experiments on the Viscosity of Ice.” By J. F. Main, M.A., D.Sc. Communicated by Prof. W. C. Unwin, F.R.S. Received April 13,—Read May 5, 1887.

Owing to the uncertainty prevailing as to the continuous extensibility of ice under tensional stress, it appeared to me desirable to institute a series of experiments directed to this point, conducted according to the methods, and, as far as possible, with the exactness of modern experimental testing.

In order to eliminate the influence of regelation, the experiments have been carried on at such low temperatures as preclude the possibility of any effect being produced by this cause, the highest temperature recorded in Experiment No. 1 being \(-2.6^\circ\) C.; in No. 2, \(-1.0^\circ\) C.; and in No. 3, \(-0.5^\circ\) C. It must be remarked, moreover, that these maximum temperatures only obtained for a very short time, on one or two days, as will be seen from the records.

The testing machine which I used was constructed for me by Herr Ingenieur Usteri-Reinacher, of Zürich. It was on the compound lever principle, the ratio of the arms of the equivalent simple lever being 1:20. All parts where friction could be prejudicial were provided with knife-edges. The design of the machine is obvious from the figure, in which A represents the specimen of ice to be tested, held by the collars at B and C. D is an equipoise, to balance the weights of the levers and of the vessel E, through which the power is applied by means of shot. F is a hand-wheel fixed to the screw G, by means of which, as the specimen extends, the under collar C may be lowered, so that the position of the upper collar B and of the two levers may remain the same. An index at H shows when the parts of the instrument are in the relative position required, and by its motion enables a rough estimate to be formed of the extension of the specimen.

The temperature was rendered more equable by enclosing the apparatus in two wooden boxes, KL and MN.

A delicate thermometer, graduated to tenths of a degree centigrade, and reading from \(-6^\circ\) C. to \(+6^\circ\) C., was attached to the central